
J .  Fluid Mech. (1987), vol. 184, p p .  533-549 

Printed in Great Britain 

533 

A boundary-element analysis of flagellar 
propulsion 

By N. PHAN-THIEN, T. TRAN-CONG AND M. RAMIAt 
Department of Mechanical Engineering, Sydney University, NSW 2006, Australia 

(Received 17 July 1986 and in revised form 16 January 1987) 

The swimming of a flagellar micro-organism by the propagation of helical waves along 
its flagellum is analysed by a boundary-element method. The method is not restricted 
to  any particular geometry of the organism nor does it assume a specific wave motion 
for the flagellum. However, only results for an organism with a spherical or ellipsoidal 
cell body and a helically beating flagellum are presented here. 

With regard to  the flagellum, it is concluded that the optimum helical wave 
(amplitude a and wavenumber k) has ak x 1 (pitch angle of 45O) and that for the 
optimum flagellar length L / A  = 10 ( L  being the flagellar length, A being the radius 
of the assumed spherical cell body) the optimum number of wavelengths N A  is about 
1.5. Furthermore there appears to be no optimal value for the flagellar radius a, with 
the thinner flagella being favoured. These conclusions show excellent quantitative 
agreement with those of slender-body theory. 

For the case of an ellipsoidal cell body, the optimum aspect ratios B / A  and CIA 
of the ellipsoid are about 0.7 and 0.3 respectively; A ,  B and C are the principal radii 
of the ellipsoid. These and all of the above conclusions show good qualitative 
agreement with experimental observations of efficiently swimming micro-organisms. 

1. Introduction 
This paper is concerned with some hydrodynamic aspects of the swimming of 

flagellar micro-organisms. There are many groups of micro-organisms possessing 
flagella, but we are only interested in the single-flagellar varieties such as the 
spermatozoa of many mammals, many types of protozoa and flagellar bacteria. These 
micro-organisms, except the flagellar bacteria (they are usually an  order-of-magnitude 
smaller), comprise a somewhat ellipsoidal cell body (head) with a mean radius of 
x 5 pm and a thin long flagellum (tail) of length x 50 pm and cross-sectional radius 
of x 0.1 pm. The tail is joined to  the head via a mid-piece which may not be present 
in some micro-organisms. The flagellum of a given organism, in executing some form 
of wave motion (i.e. helical), induces a propulsive force and an associated torque on 
the cell body. As a result the whole organism acquires a swimming speed U and a 
rigid-body counter-rotation 51. It is the prediction of this swimming speed U and 
angular velocities 51 that  we are concerned with, given the geometry of the 
micro-organism and the manner in which waves are passed down the flagellum. This 
field of study has been appropriately termed flagellar hydrodynamics and has been 
thoroughly reviewed by Lighthill (1976). 

Early mathematical models for flagellar motions were developed by Taylor (1951, 
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1952) in which the flagellum was modelled first by a waving infinite sheet and later 
by a waving cylindrical filament. The former model has the obvious limitation of 
being based on an assumed two-dimensional flow field. The latter is valid only for 
wave motions with amplitudes that are small in comparison to  the flagellar radius. 
Most flagellar micro-organisms, however, swim by passing large-amplitude waves 
down the flagellum. Models for these large-amplitude motions were first proposed by 
Hancock (1953). His method was to place a distribution of stokeslets and doublets 
along the centreline of the flagellum. The unknown strengths of these singularities 
were found by imposing the no-slip boundary conditions approximately at the surface 
of the flagellum (modelled as a cylindrical filament). However, Hancock’s method did 
not account for the inert head (cell body) which is present in most flagellar 
micro-organisms. Gray & Hancock (1955) developed a technique (resistive-force 
theory) that accounted for the cell-body drag. This theory supposes that each point 
along the flagellum experiences a resistive force which is proportional to the difference 
between the velocity of the flagellum at that point and the velocity of the surrounding 
fluid. The coefficient of proportionality is actually a second-order tensor which has 
two distinct components when expressed in a right-handed orthonormal triad, one 
of which is locally parallel to  the flagellum. One component, K,, is the resistance 
coefficient for the relative motion locally tangential to the flagellum ; the other, K,, 
is the resistance coefficient for the relative motion locally normal to  the flagellum. 
For a slender body K ,  is approximately twice Kt .  The total propulsive thrust is simply 
the integral sum of the resistive force acting on the flagellum. This thrust is exactly 
balanced by the drag force on the cell body which, in turn, yields the swimming 
velocity of the body. Gray & Hancock (1955) adopted a set of resistance coefficients 
which were derived from Hancock’s previous work with planar waves and applied 
the resistive-force theory to analyse the motion of a flagellar micro-organism that 
swims by passing sinusoidal planar waves down its flagellum. The predicted velocity 
agreed well with observed data on the swimming speed of spermatozoa of sea urchins. 

Resistive-force theory can also be extended to cover the helical-wave case. 
However, Chwang & Wu (1971) noted that the propagation of helical waves along 
the flagellum induces a torque on the micro-organism. Thus, the body also rotates 
with an  angular velocity in response to this propulsive torque. Based on Gray & 
Hancock’s resistance coefficients, Chwang & Wu (1971) derived expressions for the 
swimming and angular velocities as well as power requirements. These expressions 
were then used to determine the optimum proportions of a given micro-organism. 

Most bacteria and Eukaryotic micro-organisms swim by passing helical waves 
along their flagella. This is accomplished by either rotating the filament as a whole, 
as in the case of bacteria, or by passing bending waves along the flagellum, as in the 
case of the Eukaryotic micro-organisms (Lighthill 1976). Resistive-force theory can, 
therefore, be considered as a successful application of hydrodynamics in biology. 
However, its value as a quantitative tool depends heavily on the accuracy of the 
resistance coefficients. Lighthill (1  976) addressed this important question and rightly 
pointed out that there were some inconsistencies in Gray & Hancock’s resistance 
coefficients. He derived a set of resistance coefficients that  have a better error estimate 
than is possible with the conventional slender-body theory and applied his theory 
to the helically beating flagella. 

Higdon (1979a, b,  c) developed an improved slender-body theory in which the 
Stokes equations were transformed into a system of singular integral equations in 
terms of the swimming velocity, angular velocity and force distribution along the 
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flagellum. These integral equations incorporated an image system inside the spherical 
cell body whilst allowing for variation in the stokeslet strengths along the flagellar 
centreline. This accounts for the hydrodynamic interaction between different parts 
of the flagellum as well as that  between the flagellum and the cell body. 

Higdon’s method represents the state of the art in modelling flagellar hydro- 
dynamics; however i t  has two major limitations. First, it assumes a spherical cell 
body, which is rarely the case in reality. Secondly, the inherent error in the 
slender-body theory is O(a/L)2  (where a and L are the flagellar radius and length 
respectively), hence significant errors may result for non-‘ slender ’ flagellar. There are 
some micro-organisms in which both these limitations are significant. One example 
is the Spirillum Volutan, for which no slender-body-theory model presently exists. 
Chwang, Wu & Winet (1972) presented a resistive-force-theory model for this 
organism that neglects the flagellar/cell body interaction. 

In  this paper, we describe a numerical technique for solving flagellar hydro- 
dynamics problems which is based on a boundary-element method and does not 
assume any specific geometry for the cell body or the flagellum. However we only 
present results for a micro-organism with a spherical/ellipsoidal cell body and a 
cylindrical flagellum executing helical wave motion, while a model for the swimming 
of the Spirillum Volutan will hopefully be presented in a future paper. 

2. Analysis 
2.1. Boundary-integral formulation 

The boundary-integral formulation for linear elastic problems (including the Stokes 
flow problems) is well known and has been well documented elsewhere, e.g. Banerjee 
& Butterfield (1981) and Brebbia, Telles & Wrobel (1984). The chief advantage of 
the method is the automatic treatment of flow conditions at infinity; only the 
boundary of the body, or bodies, requires discretization. Here, we briefly review the 
method as applied to the Stokes flow problems. We start with the conservation 
equations 

v * u  = 0, VP = 7 p u ,  X E  v, (1) 

where u is the velocity vector, P is the hydrostatic pressure which arises owing to 
the incompressibility constraint, 7 is the constant viscosity of the fluid and V is the 
flow domain. The flow domain is external t o  the particle (the micro-organism) which 
has a surface S. On S the no-slip boundary condition applies and we have 

u ( x )  = P(x) ,  X€S, (2) 

where U(x) is the prescribed velocity of the particle at point X. We leave U as yet 
unspecified. Far away from the particle, quiescent conditions apply, i.e. both velocity 
and traction fields go to  zero. Note that there are neither body nor inertial forces in 
the Stokes equations. These equations are applicable to the motion of fluid around 
the micro-organism ; the Reynolds number based on the lengthscale of the organism 
is extremely small. The reduction of (1) and (2) to an  integral equation is accomplished 
by using Somigliana’s identity 

(3) 
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where Gij (x ,  X )  is the singular stokeslet solution and H t j ( x ,  X )  is its associated 
traction field on S :  

in which r = x- X, r2 = r ' r ,  6, is the Kronecker delta and n is a unit outward (with 
respect to the flow domain) normal on S; u and t are respectively the velocity and 
traction field. 

Taking X to a boundary point on S by the usual limiting process yields 

Cij (X)  = lim j Hii(x,  X )  dS(x), (6) 

where 8, is the surface of V,, which is the part of the domain contained within a sphere 
of radius 6 centred at point X. If the surface S is smooth in the sense that it has a 
tangent plane everywhere, then C, = +Sij .  It should be noted that the integral on the 
left-hand side of (6) is understood to be a Cauchy principal value integral. A 
simplification of (6) is possible when the body is undergoing a rigid-body translational 
motion (Youngren & Acrivos 1975), a rigid-body rotation or both (Tran-Cong & 
Phan-Thien 1986). The unknown traction on the surface S can be found by solving 
(6) numerically. I n  the case of a mixed boundary-value problem, where the velocity 
is prescribed on part of S ,  say S,, and the traction on the remaining part S,, a 
rearrangement of (6) is necessary before solving for the unknown traction on S,  and 
the unknown velocity on 8,. When a boundary solution has been found (6) can be 
used again to find the velocity field anywhere in the flow domain (with the convention 
that Cij (X)  = J i j  when X i s  inside the open connected domain V ) .  

E'O s, 

2.2. Geometrical modelling 

Although the boundary-integral method is applicable to an arbitrarily shaped body, 
we choose to analyse the motion of a single flagellar micro-organism that has a 
spherical or ellipsoidal cell body and swims by executing helical waves down its 
flagellum. The problem of describing the centreline of the flagellum in this case has 
been discussed at  length by Higdon (1979~) .  Specifically, the position of any point 
along the centreline of the flagellum is given parametrically by 

(x,y,z)  = (x,a cos(kr-wot),a sin(kx-wt)), (7) 

where a is the amplitude, k is the wavenumber and w is the angular frequency of the 
helical wave. 

To place the cell body on the helical axis, Higdon suggested, and we adopt it here, 
that (7)  be slightly modified such that 

(8) 

(9) 

r = (x,y,z) = (x ,aE(x)  cos(kz-wt),aE(x) sin(kx-wt)), 

E(X) = 1 -eXp ( -  ( k E X ) 2 ) ,  

where kE is a constant which determines how quickly the helix grows to its maximum 
amplitude aE. At x = re = 2/k,, E x 0.98 and thus for x > x, all the wave para- 
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LAmplitude envelope aE(x) 

FIQURE 1 .  The micro-organism as modelled by a spherical cell body attached to the helically 
beating flagellum. 

meters are essentially constant. This region is called the linear region. I n  the region 
0 < x < x, all the wave parameters are functions of x;  i t  is called the end region, refer 
to figure 1. A realistic proportion for these regions is XJX, z 5, where x, is the 
maximum x-coordinate of the flagellum; a realistic choice for k, can then be made 
accordingly (kE NN 1). We now assume that the flagellum is simply a cylindrical 
filament of cross-sectional radius a. It can be shown (by using the symbolic 
manipulation system Macsyma) that any point P on the surface of this filament has 
the coordinates 

(10) 

where 8 = kx--wt and 0 6 $ < 2n is the polar angle on a plane orthogonal to the 
centreline of the flagellum and passing through P. H, M and N are some functions of 
x and $; they are given in Appendix A. The total length of the flagellum is given by 

(x+H(x, $), aE cosB+M(x, $), aE sine+ N(a,  $)), 

where r y ,  rz are given in (8), h = 2n/k is the wavelength of the flagellum and N A  is 
the number of wavelengths. It is generally agreed that the flagellum is inextensible 
and hence L must remain constant. We thus allow the wave parameters (ak, NA,  klk,) 
to vary a t  will, calculate the length L from (1 1 )  and from the given values a / A ,  L / A  
calculate the body parameters a and A ;  A is some characteristic radius of the cell 
body. 

Using (10) we model the cylindrical filament as a series of either hexagonal (or 
pentagonal) cylinders ; the surface of each cylinder is further divided into triangular 
elements. The free end of the flagellum, x = x,, is used as the apex of an hexagonal 
(or pentagonal) pyramid representing the end segment. 

In  an  attempt to quantify the variation in discretization error with the number 
of boundary elements on the cell body, three different discretization schemes were 
employed. Coxeter (1975) gives the coordinates of the vertices of an  icosahedron. 
By lifting the midpoint of each edge out to the surface of the sphere and using the 
extra 30 resulting vertices, the sphere can be descretized into 80 elements. The 
coordinates of the vertices of an octahedron are as given in Appendix B. Again by 
lifting the midpoint of each edge to the surface, the sphere can be discretized into 
32 elements. 

The elipsoidal cell body was discretized by scaling the vertices of the corresponding 
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Ratio of semi-major 
to semi-minor axes 

Error in drag prediction on a spheroid in axial flow (yo) 

20 elements 32 elements 80 elements ( A m  
0.1 
0.2 
0.5 
0.6 
0.7 
0.8 
0.9 
1 
1.1 
1.5 
2 
5 

10 
20 

5.15 
4.77 
4.69 
4.69 
6.66 
0.250 
5.63 
4.17 
4.54 
4.35 
4.54 
4.48 
4.39 
4.18 

1.07 
1.38 
2.44 
2.79 
2.54 
3.23 
3.17 
3.25 
3.32 
3.46 
3.42 
2.78 
2.53 
2.19 

1.44 
1.23 
1.35 
0.419 
1.18 
1.28 
1.41 
1.33 
1.36 
1.38 
1.34 
1.35 
1.33 
1.30 

Mean percentage error 4.46 2.68 1.26 

TABLE 1 

Ratio of semi-major 
to semi-minor axes 

0.1 
0.2 
0.5 
0.6 
0.7 
0.8 
0.9 
1 
1.1 
1.5 
2 
5 

10 
20 

( A m  

Mean percentage error 

Error in drag prediction on a spheroid in transverse flow (yo) 

20 elements 32 elements 

4.02 1.91 
4.08 2.46 
4.45 3.22 
4.41 3.27 
4.93 3.35 
2.79 3.35 
4.89 3.33 
4.17 3.25 
4.35 3.21 
4.68 3.02 
4.43 2.78 
3.98 1.97 
3.48 1.35 
2.80 0.228 

4.10 2.62 

TABLE 2 

80 elements 

1.18 
1.25 
1.46 
1.23 
1.27 
1.24 
1.28 
1.33 
1.37 
1.30 
1.33 
1.24 
1.13 
0.903 

1.25 

discretized sphere according to the aspect ratios of the ellipsoid. Hence a vertex 
(2, y, z )  lying on a sphere of radius A is mapped onto a vertex (z, ( B / A )  y, (CIA) z )  
lying on an ellipsoid of principal radii A ,  B and C. Finally, a correction factor is applied 
to the radii of the spherical/ellipsoidal cell bodies so that the actual surface areas 
of the cell bodies and those of the corresponding discretized cell bodies are identical. 

Each of the above discretization schemes was used to predict the drag on a spheroid 
(both for axial and transverse flow) and the results compared with the exact solution 
of Happel & Brenner (1973). The resulting errors are as summarized in tables 1 and 
2. It is apparent that the error is quite insensitive to the aspect ratio of the spheroid 
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and type of flow. Furthermore, for the 80-element cell body, the average error is about 
1.3%. 

If the angular frequency of the helical waves is w ,  cf. (8), then the centreline of 
the flagellum appears to rotate relative to the cell body with the same angular velocity 
w .  We shall assume that the cylindrical flagellum also rotates rigidly relative to the 
cell body with an angular velocity of w .  A different mode of rotation can also be 
accommodated, but is not considered here. The kinematic constraint then requires 
that the flagellum be joined to the cell body at  one single point. This is done by using 
an hexagonal (or pentagonal) pyramid to represent the first segment in the end region 
of the flagellum. Figures 2-8 illustrate some final boundary-discretization meshes. 

2.3. Numerical procedure 

We use constant boundary elements and assume that both the velocity and the 
traction fields remain constant within a triangular element. Equation (6) is reduced 
to 

N N 

c,, U p  + z u p  JSn H,j(X, x) dS(x) = z 4,) J G&, x) d f w ,  (12) 
n-1 n-1 Sn 

where dn) and t(,) are the velocity and the traction on element n. Point X belongs 
to element k and x, to element n. Some integrals in (12) can be calculated analytically 
(Brebbia et al. 1984), those remaining are evaluated numerically using a 64-point 
Gaussian quadrature scheme. Equation (12) is then arranged in the form 

HU = Gt, (13) 

where H, G are known [3N, 3NJ matrices and u and t are the boundary-solution 
velocity and traction vectors (of dimension 3N). They are arranged such that 
ul, u2, u3 are the components of the velocity vector iI at element 1, etc. Note that both 
H and G depend only on the geometry of the body, not on the prescribed boundary 
conditions. 

Now on the surface of the body the velocity field takes the form 

I (14) 
u+nxx, if x is on the cell body, { U+ ( 0 - w )  x x, if x is on the flagellum, 

- 
u(x) = 

where U is the instantaneous swimming velocity of the body and 0 is the rigid body 
angular velocity of the cell body. The flagellum rotates with respect to the rest frame 
with an angular velocity of (0-a). Both Uand 0 (a total of six components) are yet 
unknown. However, the micro-organism is self-propelled and not influenced by any 
external forces. Therefore, the total force and moment on the micro-organism are 
zero. Thus, 

N N 

n-1 n-1 
z s, t(,) = 0; E s, X(,) x t ( n )  = 0, 

where S,  is the area of the element n, t(,) is the traction vector on this element and 
dn) is the position of the centroid of this element. From (13) one has symbolically, 

t = G-WU (16) 

noting that both G and H are known for any given surface geometry; G-l is the 
inverse of G .  It can now be clearly seen that once (16) is substituted in (15) with the 
help of (14), a system of six equations results from which U and 0 can be solved for. 

Once the unknown velocities U and 0 are found, the unknown traction vector can 
be recovered from (16) and thus the flow field around the body is fully determined, 

18 PLM 184 
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0.100 - 

0.5 1.0 1.5 2.0 2.5 3.0 
NA 

6' 

100 - 

0.5 1.0 1.5 2.0 2.5 3.0 
NA 

FIQURE 2. (a) Non-dimensional mean swimming speed and ( b )  inverse efficiency as functions of the 
wave parameter N ,  (for a spherical cell body, ak = 1 ,  k/k, = 1 and a / A  = 0.02): 0,  boundary- 
element results for L / A  = 5;  A, boundary-element results for L / A  = 10; -, slender-body-theory 
results of Higdon. On the left is the boundary element mesh for an organism with the above- 
mentioned parameter values ( L / A  = 10) and N,, = 0.5; on the right is that for an organism with 
N ,  = 3. 

cf. (6). The program was written in FORTRAN for the VAX/780 and a 32-bit 
microcomputer (DSI co-processor board hosted by an IBM-PC). Implementation on 
smaller personal computers such as Apricot can and has been done; however, the 
solution procedure is based on a block-partition method (see, for example, Tran-Cong 
& Phan-Thien 1986). It should be noted that the conditioning number of the system 
matrix is quite large (of the order 300). Double-precision arithmetic needs to  be used 
to invert the matrix G. Here we adopt the standard Gauss-Jordan elimination 
method in double-precision mode. 

3. Results 
Keller & Rubinow (1976) showed that the swimming trajectory for a micro- 

organism with a helically beating flagellum is itself helical. They derived analytical 
expressions for the radius, period and pitch angle of the trajectory in terms of the 
instantaneous swimming velocity and angular velocity. Furthermore, the velocity of 
the organism along the axis of the helical trajectory is constant and is given by 
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(4 

0.5 1.0 1.5 2.0 2.5 3.0 
ak 

I 
0.5 1.0 1.5 2.0 2.5 

ak 

FIGURE 3. (a) Non-dimensional mean swimming speed and ( b )  inverse efficiency as functions of the 
wave parameter ak (for a spherical cell body, N, = 1 for L / A  = 5, Nh = 1.5 for L / A  = 10, k/k, = 1 
and a / A  = 0.02): 0, boundary-element results for L / A  = 5; A, boundary-element results for 
L / A  = 10; -, slender-body-theory results of Higdon. On the left is the boundary element mesh 
for an organism with the above-mentioned parameter values ( L / A  = 10) and ak = 0.1 ; on the right 
is that for an organism with ak = 3. 

Hence D can be calculated by solving the problem at one instant of time. This 
argument however assumes an axisymmetric cell body, hence it generally does not 
apply to the case of an ellipsoidal cell body. In this case, one needs to solve the 
problem for several different configurations of the flagellum (relative to the cell body) 
and determine the mean of the calculated velocities. This is then normalized with 
respect to the linear speed of the flagellar wave ( V  = w / k ) .  

Of primary interest here is the mean power dissipation, P ,  in swimming. Again, 
for an axisymmetric cell body, this is equal to the instantaneous power dissipation 
P and is given by 

p =  - s t ( n ) . u ( n ) .  

This power consumption can be easily shown to be - Tow, where T is the torque 
acting on the flagellum. This is non-dimensionalized with respect to 6 n ~ , d p  (where 
A is the volume average radius of the cell body) to give the inverse efficiency 

N - 

n-1 

- 

as its minimum defines the optimal swimming motion for the micro-organism. 
In the case of an ellipsoidal cell body, neither (u/ V )  nor 7; vary by more than 

18-2 
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0.05 

0.025 

1 2  4 6 8 

k/kE 

FIGURE 4. (a) Non-dimensional mean swimming speed and (b)  inverse efficiency as functions of 
the wave parameter k/k, (for a spherical cell body, ak = 1 ,  NA = 1 for L / A  = 5, NA = 1.5 for 
L / A  = 10, a / A  = 0.05): -, boundary-element results. On the left is the boundary element mesh 
for an organism with the above-mentioned parameter values ( L / A  = 10) and k/k, = 10; on the 
right is that for an organism with k/k, = 1 .  

2 %  throughout a given flagellar cycle. Hence it seems that investigation of eight 
different instants in a given cycle is sufficient. 

The mean swimming speed and inverse efficiency are functions of seven parameters : 
the wave parameters N,, ak and k/kE and the body parameters a l a ,  LIZ, B / A  and 
CIA.  First, assuming a spherical cell body, the optimum wave parameters (for typical 
body parameters) are determined. Then fixing the wave parameters a t  their optimum 
values (and still assuming a spherical cell body) the parameters a / a  and L / a  are 
optimized. The next step is to fix all other parameters at their optimal values and 
assume the cell body to be a spheroid, hence the optimal aspect ratio B / A  is 
determined. Finally CIA is optimized by allowing the cell body to  be an  asymmetric 
ellipsoid. 

All the results shown in figures 2-8 can be explained in terms of the following three 
qualitative concepts of flagellar hydrodynamics (Higdon 1979 c )  : 

(i)  The role of the resistance coefficients : The propulsive effect of the flagellum is 
due to the resistance to  normal motion being much larger than that to tangential 
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L 
-= 10 
A 

0.075 
A 

I I 
0.02 0.04 0.06 0.08 

alA 

0.02 0.04 0.06 0.08 

a / A  

FIGURE 5. (a )  Non-dimensional mean swimming speed and (6) inverse efficiency as functions of the 
body parameter a / A  (for a spherical cell body, ak = 1, k/k, = 1, N ,  = 1 for L / A  = 5, N ,  = 1.5 
for L / A  = 10): 0,  boundary-element results for L / A  = 5 ;  A, boundary-element results for 
L / A  = 10; -, slender-body-theory results of Higdon. On the left is the boundary-element mesh 
for an organism with the above-mentioned parameter values (LIA = 10) and a / A  = 0.01 ; on the 
right is that for an organism with a / A  = 0.1. 

motion. The important parameter in these coefficients is the slenderness ratio h / a  
(Lighthill 1976). Increasing this slenderness ratio has the effect of increasing K ,  
relative to K,, hence the mechanism is more effective, leading to an increase in 
swimming speed. Furthermore T,I; decreases with each of the resistance coefficients 
and with increasing swimming speed. In summary, it can be assumed that an increase 
in the slenderness ratio improves the efficiency of the organism in question as it leads 
to an increased swimming speed together with an independent decrease in the power 
consumed. 

(ii) The role of the counter-rotation with angular velocity D (assumed to be 
primarily along the axis of the helix). The swimming speed is proportional to the 
effective rotation rate of the flagellum w -9. D is less than or equal to w and increases 
with the torque T (which the flagellum induces on the cell body) which in turn is 
proportional to aa2L. Similarly, the force that the flagellum induces on the cell body 
F is proportional to aaL and the swimming speed increases with this propulsive force. 
Furthermore increases with T because rotation of the cell body is very power 
consuming and decreases with F via an increase in i7. 
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(4 
- 

- 

5 10 15 
LIA 

FIGURE 6. (a) Non-dimensional mean swimming speed and ( b )  inverse efficiency as functions of the 
body parameter L / A  (for a spherical cell body, ak = 1 ,  klk, = 1 ,  N ,  = 1.5 and a / A  = 0.05): -, 
boundary-element results. On the left is the boundary element mesh for an organism with the 
above-mentioned parameter values and L / A  = 2.5; on the right is that for an organism with 
L J A  = 20. 

(iii) The effect of hydrodynamic interaction between neighbouring waveforms of 
the flagellum and/or between the flagellum and the cell body. This is a purely 
detrimental effect as it leads to a decrease in the swimming speed with an independent 
increase in the inverse efficiency. 

Figure 2 shows the swimming speed and inverse efficiency as functions of the wave 
parameter NA (with ak = 1, klk, = 1, a / A  = 0.02, spherical cell body of radius A ) .  
The first thing to  note is the excellent agreement between the present results (shown 
aseither A or 0) and those of Higdon (1979~) (shown as solid line) : one could mistake 
the solid line for the line of best fit of the points shown. As the number of wavelengths 
increases while the waves remain geometrically similar, the amplitude a and 
wavelength h of the waves decrease. Initially, for lower values of NA, the decrease 
in a reduces T more severely than i t  reduces F :  hence (n/V) increases and 7;' 
decreases, see (ii) above. For higher values of NA, this effect is offset and eventually 
overshadowed by the decrease in the slenderness ratio hla,  ( i ) ,  and the interaction 
between neighbouring waveforms of the flagellum, (iii). The optimum values, NA = 1 
for L / A  = 5 and N A  = 1.5 for L / A  = 10, represent the respective points at which the 
compromise between the above-mentioned effects is at its best. 

Figure 3 shows the swimming speed and inverse efficiency as functions of thc wave 
parameter ak (NA = 1 for L / A  = 5 ,  N A  = 1.5 for L / A  = 10, k/k, = 1, a / A  = 0.02, 
spherical cell body). Again, the agreement with slender-body theory is excellent. 
Increasing the parameter ak has the effect of increasing the amplitude a and 
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FIGURE 7. (a)  Non-dimensional mean swimming speed and (b) inverse efficiency as functions of the 
body parameter B / A  (where A and B are the principal radii of the spheroidal cell body, A lying 
along the symmetry axis, ak = 1, k/k, = 1, Nh = 1.5, a / A  = 0.05, L / A  = 10. Here A is the radius 
of the sphere whose volume is equal to that of the spheroidal cell body) : -, boundary-element 
results. On the left is the boundary element mesh for an organism with the above-mentioned 
parameter values and B / A  = 2 ; on the right is that for an organism with B/A = 0.3. 

decreasing the wavelength h of the flagellar waves. Initially 01 is so small as to lead 
to a small propulsive force F, which may be too small to effectively overcome the 
drag on the cell body. Indeed in the extreme case when ak = 0 and the flagellum is 
axisymmetric, the propulsive force is zero. For larger amplitudes, the increase in the 
propulsive torque T becomes the more important consideration bringing the increase 
in (FIT') to a halt, (ii). This together with the decrease in the slenderness ratio, (i), 
eventually negates the effect of the increased propulsive force. Here the compromise 
is reached at  the optimum value ak = 1 (pitch angle of 45') which appears to be 
independent of the flagellar length. 

Figure 4 shows the swimming speed and inverse efficiency as functions of the wave 
parameter k / k ,  (ak = 1, Nh = 1 for L / A  = 5 ,  Nh = 1.5 for L / A  = 10, a / A  = 0.005, 
spherical cell body). This parameter determines the length of the end region, i.e. how 
quickly the flagellum grows to its maximum amplitude. It is apparent that the 
swimming speed decreases consistently with k l k ,  while, within a realistic range 
(depending on the flagellar length) of this parameter, the inverse efficiency is 
essentially constant. Hence we conclude that the efficiency of the swimming motion 



546 

200 

150 

70' 
100 

50 

N .  Phan-Thien, T .  Tran-Cong and M .  Ramia 

- 

- 

- 

- 

I 

0.2 0.4 0.6 0.8 

CIA 

FIQURE 8. (a) Non-dimensional mean swimming speed and ( b )  inverse efficiency as functions of the 
body parameter C I A  (where A ,  B and C are the principal radii of the ellipsoidal cell body with A 
lying along the axis of the helical flagellum, ak = 1, k/k, = 1, N A  = 1.5, a / A  = 0.05, L / a  = 10, 
B / A  = 0.7.  Again, here, A is the equivalent cell body radius, based on volume conservation): -, 
boundary-element results. On the left is the boundary element mesh for an organism with the 
above-mentioned parameter values and C / A  = 0.3 (this is the optimal micro-organism); on the 
right is that for an organism with C / A  = 0.7. 

is fairly insensitive to the parameter k/k,, provided that the end region does not 
occupy too large a proportion of the flagellar length. 

Figure 5 shows the swimming speed and inverse efficiency as functions of the body 
parameter a / A  (ak = 1, N,, = 1 for L / A  = 5, N,, = 1.5 for L/A = 10, k/k, = 1, 
spherical cell body). Again agreement with the slender-body theory is excellent. It 
is apparent that the swimming speed is fairly insensitive to variations in a / A .  This 
is due t o  the increase in the propulsive force P being offset by the associated increase 
in the propulsive torque, (ii). The inverse efficiency increases monotonically with 
a / A ,  owing to the increasing propulsive torque, (ii), and the decrease in the 
slenderness ratio, (i). Whilst the thinner flagella are favoured, there appears to be 
no optimal value for this parameter. 

Figure 6 shows the swimming speed and inverse efficiency as functions of the body 
parameter L / A  (ak = 1 ,  N,, = 1.5, k/k, = 1.5, a / A  = 0.05, spherical cell body). 
Initially, the swimming speed increases with an increase in L / A .  This is because, for 
the shorter flagella, the propulsive force F is too small to effectively propel the large 
cell body, (ii). This together with the diminishing effect of hydrodynamic interaction, 
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(iii), (which is proportionately more important for shorter flagella) leads to an increase 
in the swimming speed and a decrease in the inverse efficiency. For larger values of 
L / A ,  the effect of the increasing propulsive torque, (ii), overshadows the above- 
mentioned effects. The point a t  which these mechanisms reach the best compromise 
is L / A  = 10. Direct comparison with Higdon’s results cannot be made here as N A  was 
kept at its optimum value in the latter (this optimum value depends on L/A).  

Figure 7 shows the swimming speed and inverse efficiency as functions of the body 
parameter B/A  (ak = 1, N A  = 1.5, L/a = 10, a / x  = 0.05, C/A = B/A,  2 is the 
volume mean radius of the spheroidal cell body). The most important consideration 
here is that for a given volume, the cell body should have minimum resistance (to 
axisymmetric translation) while its moment of rotational inertia should be maximized 
(ii). Bourot (1974) showed that satisfying the former of these constraints leads to a 
body shape which is nearly a prolate spheroid of aspect ratio about 0.5. This is not 
too different to the optimal aspect ratio of about 0.7 obtained here. 

Figure 8 shows the swimming speed and inverse efficiency as functions of the body 
parameter CIA (ak = 1, NA = 1.5, k/k, = 1, a / A  = 0.05, L / Z  = 10, B / A  = 0.7). 
Here it is found that for a cell body with minimum translational resistance and 
maximum rotational resistance, the body parameter CIA is about 0.3. Hence, the 
optimum cell body shape is a flat elipsoid (of aspect ratios about 0.7 and 0.3). There 
are many examples of this in nature, see for example Rikmenspoel (1966) who gives 
the dimensions of a bull spermotozoa. 

4. Conclusion 
In  summary we conclude that the boundary -element method can be successfully 

applied to solve flagellar hydrodynamics problems. The major contributing factor 
that renders this feasible is that the traction boundary solution is not very sensitive 
to the aspect ratios of the triangular boundary elements. This allows the slenderness 
and curvature associated with flagella to be easily modelled. Meaningful results were 
obtained for boundary-element meshes in which the majority of the triangular 
elements have an aspect ratio of about 20. Although the matter was not investigated 
beyond this point, there may not be as much flexibility for ‘non-rigid body ’ boundary 
conditions. 

The problem of designing an efficiently swimming micro-organism was addressed 
here. Given that a certain volume of biological material is to  be transported as 
efficiently as possible by a helically beating flagellum, the following conclusions, 
regarding the proportions and configuration of the organism, were reached : 

The optimum shape for the cell body is a flat ellipsoid with aspect ratios of about 
0.7 and 0.3 ; the flagellum should have a length about ten times the volume average 
radius of the cell body and as small as possible a radius; this flagellum should execute 
helical wave motion of amplitude a and wavenumber k such that ak z 1 and curl 
itself into about 1.5 wavelengths. 

The above conclusions show good agreement with experimental observation of 
efficiently swimming micro-organisms (Rikmenspoel 1966; Leifson 1960). Hence it 
would appear that the theory regarding the survival of the fittest applies even at this 
microscopic scale. 
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Appendix A. Discretization of the flagellum 
Assuming that the position vector of a point along the centreline of the flagellum 

is given by (8) and (9), and that the flagellum is a cylindrical body of radius a ,  then 
it can be shown that any point on the surface of the flagellum that lies on the plane 
orthogonal to the ccntreline at (2, y, z )  has coordinates given by (10) where 
0 < $ < 27t is a polar angle and 

(A 1) 
D 
G 

H ( x , $ )  = aa-sin$, 

s i n $ + ( E  sine+Ek cos0) cos$ 
a E k  s i n e - E  cose 

M ( x , $ )  = - G { D  

E' sin 0 + Ek cos 0 
D 

(Ek sine-E'cosO) COS$- 

D = { 1 + aZ( E2k2 + E2)}+, 
G = {E2k2 + E'}!, 

(A 4) 

(A 5) 

where 8 = kx-wt ,  E is given by (9) and E is the derivative of E with respect to x. 
These expressions were found using a symbolic manipulation system MACSYMA. 

Appendix B. Discretization of the spherical cell body 
The spherical cell body is discretized into a 20-element, 80-element or a 32-element 

body. Coxeter (1975) gives the coordinates of the vertices of the 20-element 
icosahedron as 

(0, + 7 ,  *I), ( * l , O ,  f 7 ) ,  ( + 7 ,  * 1 , O ) ,  (B 1 )  

where 7 is an irrational number whose integer powers are given by 

27+n = { f, d5+ (f,-, +f,+1)3 n odd, 
(fn-1 +fn+l) *f, 4 5 ,  n even, 

where {f,} = { 1,1,2,3,5,8,13,  . . .} is the Fibonacci sequence. Coxeter (1974) also 
gives the coordinates of the vertices of an icosadodecahedron as 

( f 2 , 0 , 0 ) ,  (0, k2 ,0) ,  (0,0, *2),  

(k7, * 7 - ' ,  f I ) ,  (k 1, k'f, f 7 - l ) ,  (&7- l ,  f 1, k7). 

By multiplying (B 1) by A ( l  +T~): and (B 2) by ;A (for scaling reasons) we can 
generate all 42 vertices of the 80-element sphere. 

To generate the 32-element sphere, one begins with the octahedron (with vertices 
(B 3a)), and divides each of its triangular faces into four triangles. The coordinates 
of the resulting vertices are 
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